ESPM UNIT-1V

Interactive Process Planning: Work Breakdown Structures, Planning Guidelines, Cost and Schedule Estimating.
Interaction Planning Process. Pragmatic Planning.

Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, and Evolution of
Organizations.

Process Automation: Automation Building Blocks, the Project Environment.

WORK BREAKDOWN STRUCTURES (WBS)

= A good work breakdown structure and its synchronization with the process framework are critical factors in software
project success. Development of a work breakdown structure dependent on the project management style,
organizational culture, customer preference, financial constraints and several other hard-to-define, project-specific
parameters.

= AWBS is simply a hierarchy of elements that decomposes the project plan into the discrete work tasks.

= A WBS provides the following information structure:
a) A delineation of all significant work
b) A clear task decomposition for assignment of responsibilities
c) A framework for scheduling, budgeting, and expenditure tracking

CONVENTIONAL WBS ISSUES
Conventional work breakdown structures frequently suffer from three fundamental flaws.
= They are prematurely structured around the product design.
= They are prematurely decomposed, planned, and budgeted in either too much or too little detail.
= They are project-specific, and cross-project comparisons are usually difficult or impossible.

Managsment
System requirements and design
Subsystarm 1
Componeant 11
Reguirarmeanis
Desiam
Code
Test
Documeantaton
- L dsimilar structures for othar compornants)
Componert 1k
Reguirarmants
Desigrm
Code
Test
Documeniation
. . . (sirmdlar structuras for other subsystans)
Subsysism M
Comporaent k1 |
Reguirements
Design
Code
Tast
Documentation
- - Asimilar struciures for other componenits)
Comporsermt W
Reguiremants
Desigmn
Code
Tast
Documeantation
Imtegraticrn arsd tesh
Test plarnning
Test procadure praeparation
Testimg
Test reporis
Oiher support areas
Configuraticon control
Cality assurance
System administration

Converrtiormnal wwork breakdoserr strvctnre, follomwsar the prrodeece

brerarchy
= Conventional work breakdown structures are prematurely structured around the product design. The above
Figure shows a typical conventional WBS that has been structured primarily around the subsystems of its

40

product architecture, and then further decomposed into the components of each subsystems. A WBS is the
architecture for the financial plan.

= Conventional work breakdown structures are prematurely decomposed, planned and budgeted in either too
little or too much detail. Large software projects tend to be over planned and small projects tend to be under
planned. The basic problem with planning too much detail at the outset is that the detail does not evolve with
the level of fidelity in the plan.

= Conventional work breakdown structures are project-specific and cross-project comparisons are usually
difficult or impossible. With no standard WBS structure, it is extremely difficult to compare plans, financial
data, schedule data, organizational efficiencies, cost trends, productivity trends, or quality trends across multiple
projects.

EVOLUTIONARY WORK BREAKDOWN STRUCTURES
An evolutionary WBS should organize the planning elements around the process framework rather than the product
framework. The basic recommendation for the WBS is to organize the hierarchy as follows:
a) First-level WBS elements are the workflows (management, environment, requirements, design, implementation,
assessment, and deployment).
b) Second-level elements are defined for each phase of life cycle (inception, elaboration, construction, and transition).
c) Third-level elements are defined for the focus of activities that produce the artifacts of each phase.
A default WBS consistent with the process framework (phases, workflows, and artifacts) is shown in Figure:

41

Managemsant

A8,

AB

Al

Ifncaeption phase managamant

BB Business case dewalopment

AAB Elaboraton phease release specificatons

A Elatoration phasa WBS baselining

A Software developrment plan

AanE ncaption phase project controd and status assessmeanis
Elaboration phase managemant

A A Cormstruction phase release specifications

ASE Constructon phassa WEBS baselining

ABC Elaboration phase project control and status asssssmants
Constroction phase managament

AiTA Deployment phase planning

ACEB Deployment phase WEBS basaslining

A Construction phase project contrad and status assessmments
Transition phase managemsant

AllA Mext ganaraticon plamming

AallDp Transition phasse project control and status assessments

Ermviranrmseant

BA
BB

BC

(=]

Incepton phase enviromnment specification

Elaboraticn phase arnwviroormeaent baselining

BEA Deweloprment evironmeant installation and administration

BBE Drenvelopment environment imtegration and custorm
toolsmithing

BEBC S0 database formulation

Cronstruction phasse amvironmean! maintenance

BCA Devaelopment environment installation and administration

BB SCO database maintenance

Transiticn phase enviromnmeni maintenance

BDA Devaloprmeant envircormant maintaenancse arsd admdndistration

BOvE SO0 database maimtenance

B Maimtenance envircnmant packaging and transition

Raguiraments

A Ineception phass requirameanis developrment
[t Wision spacification
CAaB Use case modeling
B Elaborabion phase requiremants basalindng
CBEa Wision basalining
cBBe Use case modal basalinirg
CC Construction phase requirements maintenance
CO Transon phase requirameants maintenance
Da=igm
oo Inoception phase architeciurs ottty g
DE Elabgoration phase architecture baselinimag

[m-1ang

[])

DS & Ao hritescure desigm rreodeling ;
DEE Erasign dam-onstraltiscomn plarunieng arsd oomduct
DB Saoftware architecturs descripbican
Construction phass desiagn mocedireg

e L Srchitesctures e sigm o] FreaEl rvbeE M Enress

[T = Componeant design modaslirneg

Transition phassa design maintenarsce

Irmplaemeantaticn

EA ImeseEEtiors O s ey o rrEeo rvEr T o e Bo by re recy
EE Ekabhaoration phase cormmpoanent mmplaemrsaentation
EBa Coribvcal cormpanant Soding dermonStrat-on imtegrateon
EdT Cornstractiomn ehEss CooOrmthyno mESnit e e e ta by
E s Imitial releasads) componaent coding and stiarnd-alocns testing
ECE ASlpha release compornent coding and stamd-alone estimog
E EBaeta releasae coormepecmervt :::l:l-ding Aarnd starwd-akones t-e-gl:ir-g
ECD oo EoerE i rmaEim e s enes
ED Trarnsition phasse compoamneaent rmaintenance
SAScEseeEa Tl
] Imcepticon phasse assessm-ent plarnning
=B Elabaration chasse assaessmmered
F B, Test meodeling
FEE Architecture tast scamnarse rmplarrsantaticsr
FBC Dermoanstration assessmeant and relaeaase descripliorns
T Constrnuction phass assessment
Fia Imitial relaase assesoment armd relaease descriptiorn
FCoBE Alpha release assessmant and release description
Fioas Eaota relaease assessmant amd relsase descripicon
|l e Transilion phasese assessrmenid
F s FProdiect realasass assessrmeant and relesass descriptons
Creployrment
L= N Imncephicn phase deployrmeant planmmg
L= = Elabhoration phase Sdeplbowymmeant ol rneg
S Construction phasse deployment
Lt arh Ll=ar manual baselirireg
G Transition phasse deployrmeaenit

A5, FProduct transilbam o usar

42

PLANNING GUIDELINES
Software projects span a broad range of application domains. It is valuable but risky to make specific planning
recommendations independent of project context. Project-independent planning advice is also risky. There is the risk
that the guidelines may be adopted blindly without being adapted to specific project circumstance. Two simple planning
guidelines should be considered when a project plan is being initiated or assessed.

Inception - Elaboration

WEBS Elemant Fidelity wWBS Elerment Fidelity
Management High - Management High
Environment Moderate : Environment High
Requirements High : Reguirements Higf
Design Moderate . Design High
Implementation Low implementation Moderate
Assessment Low Assessmeant Moderate
Deployment Lo Q Dreployment Low
WEBS Element Fidelity : WBS Element Fidelity
Management High Management High
Enwviromnment High - Ernwvirornment High
Requirermeasnts Lo : Requirements Loww
Dasign Lo . Dasign Moderate
Implementation Moderate . fmplementation Higi
Assessment High : Assessment High
Deployment High : Dheploymeent Moderate

Transition : Construction

Evolution of planning fidelity in the WBS owver the life cvcle

The below table prescribes a default allocation of costs among the first-level WBS elements.

WBS budgeting defaults

FIRST-LEVEL
WBS ELEMENT DEFAULT BUDGET
Management 10%
Er:-.'imnm_tm } N IE‘}E -
Requirements o 157% o
Design 15%
Implementation 25%
Assessment 25% R
Deployment 3%

Toral 100%

The below table prescribes allocation of effort and schedule across the lifecycle phases.
Defawlt distributions of effort and schedule by phase

DOMAIN INCEFTION ELABORATION CONSTRUCTION TRANSITION
Effort 3% 20% 65% 10%
Schedule 10% 30% 50% 10%

THE COST AND SCHEDULE ESTIMATING PROCESS
Project plans need to be derived from two perspectives. The first is a forward-looking, top-down approach. It starts with

an understanding of the general requirements and constraints, derives a macro-level budget and schedule, then
decomposes these elements into lower level budgets and intermediate milestones.

43

From this perspective, the following planning sequence would occur:

= The software project manager (and others) develops a characterization of the overall size, process, environment,
people, and quality required for the project.

= A macro-level estimate of the total effort and schedule is developed using a software cost estimation model.

= The software project manager partitions the estimate for the effort into top-level WBS using guidelines.

At this point, subproject managers are given the responsibility for decomposing each of the WBS elements into lower

levels using their top-level allocation, staffing profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in mind, analyze the micro-
level budgets and schedules, and then sum all these elements into the higher level budgets and intermediate milestones.
This approach tends to define and populate the WBS from the lowest levels upward. From this perspective, the
following planning sequence would occur:

a) The lowest level WBS elements are elaborated into detailed tasks

b) Estimates are combined and integrated into higher level budgets and milestones.

c¢) Comparisons are made with the top-down budgets and schedule milestones.

During the engineering stage top down approach dominates bottom up approach. During the production stage bottom
approach dominates top down approach.

‘lel

Bottom-up task-level planning based on
metrics from previous terations

an
)
m
=1
E
ua
g
=
=
&
Top-down projact-level planning based on
macroanalysis from previous projects
| Enginearing Slage Ii; Froduction Stage
I Incepticn Elaboration { Construction Transition
. !
Feoasibility itarations Architecture terations Usable iterations Product releases
Enginearing stage planning emphasis: Production stage planning emphasis:
» Macro-level task estimation for = Micro-level task estimation for
production-stage artifacts production-stage artifacts
= Micro-level task estimation for * Macro-level task estimation for
engineering artifacts maintenance of engineearing artifacts
* Stakeholder concurrence = Stakeholder concurrence
« Coarse-grained variance analysis of * Fine-grained variance analysis of actual
actual vs. planned expendituras vs. planned expendituras

* Tuning the top-down project-independeant
planning guidelines into project-specific
planning guidelines

= WBS definition and elaboration
Plarrming balance throwughowt the life cycle

44

THE ITERATION PLANNING PROCESS

= Planning is concerned with defining the actual sequence of intermediate results.
= Iteration is used to mean a complete synchronization across the project, with a well-orchestrated global assessment
of the entire project baseline.
Inception Iterations: the early prototyping activities integrate the foundation components of candidate architecture
and provide an executable framework for elaborating the critical use cases of eth system.
Elaboration Iteration: These iterations result in architecture, including a complete framework and infrastructure
for execution. Upon completion of the architecture iteration, a few critical use cases should be demonstrable: (1)
initializing the architecture (2) injecting a scenario to drive the worst-case data processing flow through the system
(3) injecting a scenario to drive the worst-case control flow through the system (for example, orchestrating the
fault-tolerance use cases).
Construction Iterations: Most projects require at least two major construction iterations: an alpha release and a
beta release.
Transition Iterations: Most projects use a single iteration to transition a beta release into the final product.
= The general guideline is that most projects will use between four and nine iteration. The typical project would have
the following six-iteration profile:
= Oneiteration in inception: an architecture prototype
= Two iterations in elaboration: architecture prototype and architecture baseline
= Two iterations in construction: alpha and beta releases
= Oneiteration in transition: product release

PRAGMATIC PLANNING

Even though good planning is more dynamic in an iterative process, doing it accurately is far easier. While
executing iteration N of any phase, the software project manager must be monitoring and controlling against a plan that
was initiated in iteration N-1 and must be planning iteration N+1. the art of good project management is to make trade-
offs in the current iteration plan and the next iteration plan based on objective results in the current iteration and
previous iterations. Aside form bad architectures and misunderstood requirement, inadequate planning (and subsequent
bad management) is one of the most common reasons for project failures. Conversely, the success of every successful
project can be attributed in part to good planning.

A project’s plan is a definition of how the project requirements will be transformed into a product within the
business constraints. It must be realistic, it must be current, it must be a team product, it must be understood by the stake
holders, and it must be used. Plans are not just for mangers. The more open and visible the planning process and results,
the more ownership there is among the team members who need to execute it. Bad, closely held plans cause attrition.
Good, open plans can shape cultures and encourage teamwork.

Software lines of business and project teams have different motivations. Software lines of business are motivated by
return on investment, new business discriminators, market diversification and profitability.

Software professionals in both types of organizations are motivated by career growth, job satisfaction and the
opportunity to make a difference.

LINE -OF-BUSINESS ORGANIZATIONS

The main features of the default organization are as follows:

» Responsibility for process definition and maintenance is specific to a cohesive line of business.

» Responsibility for process automation is an organizational role and is equal in importance to the process definition
role.

» Organization roles may be fulfilled by a single individual or several different teams, depending on the scale of the
organization.

45

Organization
Manager
Software Engineering Project Review
Process Authority Authority
= Process definition = Project compliance
* Process improvement = Periodic risk assessment
Soft_waré Engineering
Environment Authority infrastructure
= Process automation) = Project administration
= Engineering skill centers
= Professional development
Project A Project B Project C Project D . .- Project N
Manager Manager Manager Manager Manager

Defanlt roles in a software line-of-business orgarnization

The line of business organization consists of 4 component teams.

Software Engineering Process Authority (SEPA):

X3

8

X3

8

X3

8

X3

8

Responsible for exchanging the information and project guidance to or from the project practitioners.
Maintains current assessment of organization process maturity.

Help in initiate and periodically assess project processes.

Responsible for process definition and maintainence.

Project Review Authority (PRA):

72
0‘0

72
0‘0

Responsible for reviewing the financial performance, customer commitments, risks & accomplishments,
adherence to organizational policies by customer etc.

Reviews both project™s conformance, customer commitments as well as organizational polices, deliverables,
financial performances and other risks.

Software Engineering Environment Authority (SEEA):

Y/
°

Y/
°

Y/
°

Y/
°

SEEA deals with the maintenance or organizations standard environment, training projects and process
automation.

Maintains organization®s standard environment.

Training projects to use environment.

Maintain organization wide resources support.

Infrastructure:

Y/
0'0

An organizations infrastructure provides human resources support, project-independent research and
development other capital software engineering assets. The typical components of the organizational
infrastructure are as follows:
O Project Administration: Time accounting system; contracts, pricing, terms and conditions; corporate
information systems integration.
O Engineering Skill Centers: Custom tools repository and maintenance, bid and proposal support,
independent research and development.
O Professional Development: Internal training boot camp, personnel recruiting, personnel skills database
maintenance, literature and assets library, technical publications.

PROJECT ORGANIZATIONS

The default project organization and maps project-level roles and responsibilities. This structure can be tailored to the
size and circumstance of the specific project organization.

46

The main feature of the default organization is as follows:

The project management team is an active participant, responsible for producing as well as managing. Project
management is not a spectator sport.

The architecture team is responsible for real artifacts and for the integration of components, not just for staff
functions.

The development team owns the component construction and maintenance activities.

Quality is every one job. Each team takes responsibility for a different quality perspective.

oo O O

47

Software Managenmant J

Artifacts
= Business case

= Software devaedloprmsant plam
= Slalus assessrmants

Activities
= Customear interfacs, PRA interfacs
= Planming, progress monitoring
= Risk mamsagerment
= Software proscnss daedinition
= Frocess improssarmasnt

Systemnms Engineering

Administratiomn

Arifacts
= Wizion state ment
= Raqursmants sat
B clineibies
= Fecusnerrenls eleci Lo
= FRaquremanis speaecifecation
= Use case modaling

artifacts
= Work breskdowsn struchens
Aclivibies
= Finamcial forecasting, reposting
= WBS definikon, administration

Software
Software Architecture Software Dewveloprment Asoessment
Aurtitacis Arifacts Artifacts

= A rchiteciure descrption
= Aslaass apecficatoams
= Design ==1

Activitias
= Damonstration plamming
= draky sis, desigpm
= grohibsciure protyping
= A rchibesciure documsntation
= Demoeresiration coondenatace
= Compornsnt dasign
= Maka'buy/rause analysis

= Chesmigr se1

= lmplemeaentethom sat
= Aaspuiremerts sl
= Dayplloyrnent sat

= [D3e P ooy e S

= S0 datahege

= Ussr manual

= Felease descriphons

= Ernvvirornmant

= Deploy mesnt docuwmeands
Auctivitias

= Cormporsent design

= Cosmporssnt implementation
= i oemporsa] bieslirg

= T PO ey L sy e s

Ol s
= Fplease assossrmuent
= Lise casa/scanano esting
= Test ascenarnc dewedop mesar
= Thange mMeanasgerment
= Transition o user
= Swsiam adminestraticm
= Enwirarnrmant configurataon
= [Ermsinoer rmegeyl Syl eraureC e
= Teodsmithing

Diefanlt project orpganizafion amnd respomsibylities

Software Management Team:

Q

O As the software attributes, such as

This is active participant in an organization and is incharge of producing as well as managing.

Schedules, costs, functionality and quality are interrelated to each other,

negotiation among multiple stakeholders is required and these are carried out by the software management team. _

Responsibilities:

«» Effort planning
+« Conducting the plan
% Resource management
Stakeholders satisfaction
Risk management

Assignment or personnel

o
o
o
o

Y/
0.0

Quality assurance

Adapting the plan according to the changes in requirements and design

Project controls and scope definition

48

Software Management

Artifacts Systems engineering Responsibilities

* Business case Financial administration * Resource commitments

* Vision Quality assurance * Personnel assignments

* Software development plan * Plans, priorities

* Work breakdown structure * Stakeholder satisfaction

* Status assessments * Scope definition

* Requirements set * Risk management

* Project control
Life-Cycle Focus
Inception Elaboration Construction Transition
Elaboration phase Construction phase planning | Transition phase planning | Customer satisfaction
planning Full staff recruitment Construction plan Contract closure

Team formulation Risk resolution optimization Sales support
Contract baselining Product acceptance criteria | Risk management Next-generation planning
Architecture costs Construction costs

Software management team activities

Software Architecture Team:

O The software architecture team performs the tasks of integrating the components, creating real artifacts etc.
O It promotes team communications and implements the applications with a system-wide quality.
O The success of the development team is depends on the effectiveness of the architecture team along with the software
management team controls the inception and elaboration phases of a life-cycle.
O The architecture team must have:
+«+ Domain experience to generate an acceptable design and use-caseview.
«» Software technology experience to generate an acceptable process view, component and development views.

Responsibilities:
+» System-level quality i.e., performance, reliability and maintainability.
+« Requirements and design trade-offs.
«» Component selection
¢+ Technical risk solution
« Initial integration

Software Architecture

Artifacts Demonstrations Responsibilities
= Architecture description Use.case modelers = Requirements trade-offs
= Requirements set Design modelers « Design trade-offs
* Design set Performance analysts Component selection
* Release specifications « Initial integration

« Technical risk resolution

Life-Cycle Focus

Inception Elaboration Construction Transition
Architecture prototyping Architecture baselining Architecture maintenance Architecture maintenance
Make/buy trade-ofts Primary scenario Multiple-component issue Multiple-component issue
Primary scenario definition demonstration resolution resolution
Architecture evaluation Make/buy trade-off Performance tuning Perforrmance tuning

criteria definition baselining Quality improvements Quality improvements

Software architecture team activities

49

Software Development Team:

U The Development team is involved in the construction and maintenance activities. It is most applicationspecific
team. It consists of several sub teams assigned to the groups of components requiring a common skill set.

O The skill set include the following:

+« Commercial component: specialists with detailed knowledge of commercial components central to a system's
architecture.

« Database: specialists with experience in the organization, storage, and retrieval of data.

% Graphical user interfaces: specialists with experience in the display organization; data presentation, and user
interaction.

++ Operating systems and networking: specialists with experience in various control issues arises due to
synchronization, resource sharing, reconfiguration, inter object communications, name space management etc.

+« Domain applications: Specialists with experience in the algorithms, application processing, or business rules
specific to the system.

Responsibilities:

O The exposure of the quality issues that affect the customer*s expectations.
O Metric analysis.
O Verifying the requirements.
U Independent testing.
U Configuration control and user development.
O Building project infrastructure.
Software Development
Artifacts L Component teams Responsibilities
* Design set = Component design
* Implementation set = Component impiementation
= Deployment set « Component stand-alone test
= Component maintenance
= Component documentation
Life-Cycle Focus
Inception Elaboration Construction Transition
Prototyping support Critical component design Component design Component maintenance
Make/buy trade-aoffs Ciritical component Component implementation Component documentation
implementation and test Component stand-alone test
Critical component baseline Component maintenance

Software developrmient team activities

Software Assessment Team:

O This teamis involved in testing and product activities in parallel with the ongoingdevelopment.

O It is an independent team for utilizing the concurrency of activities.

O The use-case oriented and capability-based testing of a process is done by using twoartifacts:
+» Release specification (the plan and evaluation criteria for a release)
+» Release description (the results of a release)

Responsibilities:

The exposure of the quality issues that affect the customer®s expectations.

Metric analysis.

Verifying the requirements.

Independent testing.

Configuration control and user development.

Building project infrastructure.

X3

A

X3

A

X3

A

X3

A

X3

A

X3

A

50

Software Assessment

Artifacts Release testing Responsibilities
- Deployment set Change management = Project infrastructure
* SCO database Deployment = Independent testing
* User manual Environment support « Requirements verification
* Environment = Metrics analysis
* Release specifications = Configuration control
* Release descriptions * Change management
* Deployment documents + User deployment
Life-Cycle Focus
Inception Elaboration Construction Transition
Infrastructure planning Infrastructure baseline Infrastructure upgrades Infrastructure maintenance
Primary scenario Architecture release testing Release testing Release baselining
prototyping Change management Change management Change management
Initial user manual User manual baseline Deployment to users
Requirements veritication | Requirements verification

Software assessment team activities

EVOLUTION OF ORGANIZATIONS

U The project organization represents the architecture of the teamand needs to evolve consistent with the project

plan captured in the work breakdown structure.

O Adifferent set of activities is emphasized in each phase, as follows:

+« Inception team: An organization focused on planning, with enough support from the other teams to ensure that

the plans represent a consensus of all perspectives.

« Elaboration team: An architecture-focused organization in which the driving forces of the project reside in the
software architecture team and are supported, by the software development and software assessment teams as
necessary to achieve a stable architecture baseline.

+« Construction team: A fairly balanced organization in which most of the activity resides in the software
development and software assessment teams.
+ Transition team: A customer-focused organization in which usage feedback drives the deploymentactivities

Software : Software
Managermant Managermeant
S0% ~ 10%%

Software Software Softwars _ Software Software Scftware
Avrchiteacturs Davaloprment Assassmeant . Architecture Developmant Assessment

20%a 20%c 10%% . S0% 20%: 20%

Inception : Elaboration
Transition . Construction
Software : Saftware
Managament Managermeant
1O — 10O%

[

I I i 5 [| 1
Software Sofware Software : Software Software Software
Architecture Davaloprment Assessmant N Architectura Dewvaeltopment Assassment
5% 35% 50% . 1096 50% 30

Sofriare project tearn evolutior over the fife cycle

PROCESS AUTOMATION

There are 3 levels of process:

1. Metaprocess: An organization“s policies, procedures, and practices for managing a software intensive line of
business.The automation support for this level is called an infrastructure. An infrastructure is an inventory of preferred
tools, artifact templates, microprocess guidelines, macroprocess guidelines, project performance repository, database of
organizational skill sets, and library of precedent examples of past project plans and results.

2. Macroprocess: A project's policies, procedures, and practices for producing a complete software product within
certain cost, schedule, and quality constraints. The automation support for a project's process is called an environment.
An environment is a specific collection of tools to produce a specific set of artifacts as governed by a specific project
plan.

3. Microprocess: A project team's policies, procedures, and practices for achieving an artifact of the software process.
The automation support for generating an artifact is generally called a tool. Typical tools include requirements
management, visual modeling, compilers, editors, debuggers, change management, metrics automation, document
automation, test automation, cost estimation, and workflow automation.

51

Automation Buliding Blocks

Workflows Environment Tools and Process Automation

Management | Workflow automation, metrics automation i
Environment | Change management, document automation f
Requirements | Requirements management
Design | Visual modeling !
Implementation | Editor-compiler-debugger |
Assessment I Test automation, defect tracking E
Deployment | Defect tracking |

Process | Organization Policy |

Life Cycle | Inception Elaboration I Construction Transition I

Typical autormation and tool components that support the process workflows

Management: Software cost estimation tools and WBS tools are useful for generating the planning artifacts. For
managing against a plan, workflow management tools and a software project control panel that can maintain an on-line
version of the status assessment are advantageous.
Environment: Configuration management and version control are essential in a modern iterative development process.
(change management automation that must be supported by the environment.
Requirements: Conventional approaches decomposed system requirements into subsystem requirements, subsystem
requirements into component requirements, and component requirements into unit requirements.
The ramifications of this approach on the environment*s support for requirements management are twofold:

1. The recommended requirements approach is dependent on both textual and model-based representations

2. Traceability between requirements and other artifacts needs to be automated.
Design: The primary support required for the design workflow is visual modeling, which is used for capturing design
models, presenting them in human-readable format, and translating them into source code. Architecture-first and
demonstration-based process is enabled by existing architecture components and middleware.
Implementation: The implementation workflow relies primarily on a programming environment (editor, compiler,
debugger, and linker, run time) but must also include substantial integration with the change management tools, visual
modeling tools, and test automation tools to support productive iteration.
Assessment and Deployment: To increase change freedom, testing and document production must be mostly
automated. Defect tracking is another important tool that supports assessment: It provides the change management
instrumentation necessary to automate metrics and control release baselines. It is also needed to support the deployment
workflow throughout the life cycle.

THE PROJECT ENVIRONMENT
The project environment artifacts evolve through three discrete states:
1. The proto typing environment includes an architecture tested for prototyping project architectures to evaluate trade-
offs during the inception and elaboration phases of the life cycle. It should be capable of supporting the following
activities:

— technical risk analyses

— feasibility studies for commercial products

— Fault tolerance/dynamic reconfiguration trade-offs

— Analysis of the risks associated implementation

— Development of test scenarios, tools, and instrumentation suitable for analyzing the requirements.
2. The development environment should include a full suite of development tools needed to support the various process
workflows and to support round-trip engineering to the maximum extent possible.
3. The maintenance environment may be a subset of the development environment delivered as one of the project's end
products.

52

Four important environment disciplines that is critical to the management context and the success of a modern iterative
development process:
— Tools must be integrated to maintain consistency and traceability. Roundtrip Engineering is the term used to
describe this key requirement for environments that support iterative development.
— Change management must be automated and enforced to manage multiple, iterations and to enable change
freedom. Change is the fundamental primitive of iterative development.
— Organizational infrastructures A common infrastructure promotes interproject consistency, reuse of training,
reuse of lessons learned, and other strategic improvements to the organization's metaprocess.
— Extending automation support for stakeholder environments enables further support for paperless exchange of
information and more effective review of engineering artifacts.

Round-Trip Engineering
* Round-trip engineering is the environment support necessary to maintain consistency among theengineering
artifacts.
» The primary reason for round-trip engineering is to allow freedom in changing software engineering data
sources.

i_ Forward engineering (source generation from models)

< Reverse engineering (models generation from source) |

Design Set Implementation Set ’_
2 UML Models Source Code g
[
= 7]
5 I i g
2 5
= Reguirements Set .E
Automated production i UML Models 32
3 5
: :
Traceability links S y E
BEEE— E Deployment Set E
Executable Code
~— ~—

< Portability among platforms and network topologies >

Round-trip engineering

Change Management
» Change management is as critical to iterative processes as planning.
» Tracking changes in the technical artifacts is crucial to understanding the true technical progress trends and
quality trends toward delivering an acceptable end product or interim release.
» In a modern process-in which requirements, design, and implementation set artifacts are captured in rigorous
notations early in the life cycle and are evolved through multiple generations-change management has become
fundamental to all phases and almost all activities.

Software Change Orders (SCO)
» The atomic unit of software work that is authorized to create, modify, or obsolesce components within a
configuration baseline is called a software change order (SCO).
» Software change orders are a key mechanism for partitioning, allocating, and scheduling software work against
an established software baseline and for assessing progress and quality.

The basic fields of the SCO are title, description, metrics, resolution, assessment and disposition.

a) Title. Thetitle is suggested by the originator and is finalized upon acceptance by the configuration control board.

b) Description: The problem description includes the name of the originator, date of origination, CCB-assigned SCO
identifier, and relevant version identifiers of related support software.

€) Metrics: The metrics collected for each sea are important for planning, for scheduling, and for assessing quality
improvement. Change categories are type 0 (critical bug), type 1 (bug), type 2 (enhancement), type 3 (new feature), and
type 4 (other)

53

d) Resolution: This field includes the name of the person responsible for implementing the change, the components
changed, the actual metrics, and a description of the change.
e) Assessment: This field describes the assessment technique as either inspection, analysis, demonstration, or test.
Where applicable, it should also reference all existing test cases and new test cases executed, and it should identify all
different test configurations, such as platforms, topologies, and compilers.
j] Dlsposmon The SCO is assigned one of the following states by the CCB:
Proposed: written, pending CCB review

» Accepted: CCB-approved for resolution

* Rejected: closed, with rationale, such as not a problem, duplicate, obsolete change, resolved by another SCO

» Archived: accepted but postponed until a later release

* Inprogress: assigned and actively being resolved by the development organization

* Inassessment: resolved by the development organization; being assessed by a test organization

* Closed: completely resolved, with the concurrence of all CCB members.

Tithe::
— ———
Prrogect: _ _

EEIERE i (o crron 2 annancement. 9 new featre, 4 otnen
Imitial Estimate Auctiaal FRewnsrk B s rvchaescl
EBreakaoge: _ Analysds — . Thesf:
Flasrescrrkc: . Irmplamani: o ciarmiamd -

Resolution Surnanbyst:

= P T et] P e T])

Fiathod: finspactom, analysis, dermonsbratscm, besth

Tersbar: Platfornms: Dharte:
—

00, s e N [= P27 T
Chocs e _ [P

FHalsasa: Frsaricy _

Tre predenadtice compramrerrts of @ saftecare chrarmpge order
Configuration Baseline
A configuration baseline is a named collection of software components and supporting documentation that is subject to
change management and is upgraded, maintained, tested, statused and obsolesced as a unit.
There are generally two classes of baselines:
1. external product releases and
2. internal testing releases.
A configuration baseline is a named collection of components that is treated as a unit. It is controlled formally because it
is a packaged exchange between groups. A project may release a configuration baseline to the user community for beta
testing. Once software is placed in a controlled baseline, all changes are tracked. A distinction must be made for the
cause of a change. Change categories are as follows:
— Type 0: Critical failures, which are defects that are nearly always fixed before any external release.
— Type 1: A bug or defect that either does not impair the usefulness of the system or can be worked around.
— Type 2: A change that is an enhancement rather than a response to a defect.
— Type 3: A change that is necessitated by an update to the requirements.
— Type 4: changes that are not accommodated by the other categories.

54

Typical project release sequence for a large-scale, one-of-a-kind project

Inception Elaboration Construction Transition
T - TT TP TT Y i
FProlctype 0.1 ——
Architecture 0.2 — 0 | 0.3.1 0.a2 1.0.1 2.01 2.02 3.1.1 4.0.1
Architecture 0.3 Beta release 3.1
Internal test release 1.0 Product release 4.0
Alpha test reb 2.0
O beta ral a0 Upgrade release 4.1

Typical project release sequence for a small commercial product

incap:ion Elahorali{)n Construction Transition
Prototype 0.1 —
Architecture 0.2 att 3.1.2 <.0.7 a.1.2
Architeciure 0.3 Beata reieasea 3.1
Intarnal tast ralease 1.0 FProduct release 4.0
Alpha lest ralaase 2 D
10C: bata ral Upgrada releasa 4.1

Upgrade ralease 4.2

Exarmple release bistories for a tvpical project and a tvpical product
Configuration Control Board (CCB)

» ACCB is ateam of people that functions as the decision authority on the content of configuration baselines.

» A CCB usually includes the software manager, software architecture manager, software development manager,
software assessment manager and other stakeholders (customer, software project manager, systems engineer,
user) who are integral to the maintenance of a controlled software delivery system.

» The [bracketed] words constitute the state of an SCO transitioning through theprocess.

» [Proposed]: A proposed change is drafted and submitted to the CCB. The proposed change must includea
technical description of the problem and an estimate of the resolution effort.

» [Accepted, archived or rejected]: The CCB assigns a unique identifier and accepts, archives, or rejects each
proposed change. Acceptance includes the change for resolution in the next release; archiving accepts the
change but postpones it for resolution in a future release; and rejection judges the change to be without merit,
redundant with other proposed changes, or out of scope.

* [In progress]: the responsible person analyzes, implements and tests a solution to satisfy the SCQ. This task
includes updating documentation, release notes and SCO metrics actuals and submitting new SCOs.

* [In assessment]: The independent test assesses whether the SCO is completely resolved. When the independent
test team deems the change to be satisfactorily resolved, the SCO is submitted to the CCB for final disposition
and closure.

* [Closed]: when the development organization, independent test organization and CCB concur that the SCO is
resolved, it is transitioned to a closed status. ,,

Infrastructures

Organization®s infrastructure provides the organization capital assets, including two key artifacts:
a) a policy that captures the standards for project software development processes, and
b) an environment that captures an inventory of tools.

Organization Policy
» The organization policy is usually packaged as a handbook that defines the life cycle and the process primitives
(major milestones, intermediate artifacts, engineering repositories, metrics, roles and responsibilities). The handbook
provides a general framework for answering the following questions:
— What gets done? (activities and artifacts)
— When does it get done? (mapping to the life-cycle phases and milestones)
— Who does it? (team roles and responsibilities)
* How do we know that it is adequate? (Checkpoints, metrics and standards of performance).

55

[Process-primitive definitions
AL Life-cycle phases (inception, elaboration, construction, transition)
B. Checkpoints (major milestones, minor milestones, status assessments)
C. Artifacts (requirements, design, implementation, deployment, management |
sets)
D. Roles and responsibilities (PRA, SEPA, SEEA, project teams) ‘%
n Organizational software policies i
Work breakdown structure
Software development plan
Baseline change management
Software metrics
Development environment !
Ewvaluation criteria and acceptance criteria
Risk management
. Testing and assessment
(118 Waiver policy ||
iv. Appendixes f
A. Current process assessment]
B. Software process improvement plan l
|

IpMMOO®>

Organization policy outline

Organization Environment
Some of the typical components of an organization™s automation building blocks are as follows:
+ Standardized tool selections, which promote common workflows and a higher ROI on training.
+ Standard notations for artifacts, such as UML for all design models, or Ada 95 for all custom-developed,
reliability-critical implementation artifacts.
» Tool adjuncts such as existing artifact templates (architecture description, evaluation criteria, release
descriptions, status assessment) or customizations.
» Activity templates (iteration planning, major milestone activities, configuration control boards).

Stakeholder Environments
» Anon-line environment accessible by the external stakeholders allows them to participate in the process as
follows:
— Accept and use executable increments for hands-on evaluation.
— Use the same on-line tools, data and reports that the software development organization uses to manageand
monitor the project.
— Avoid excessive travel, paper interchange delays, format translations, paper and shipping costs and other
overhead costs.
» There are several important reasons for extending development environment resources into certainstakeholder
domains.
— Technical artifacts are not just paper.
— Reviews and inspections, breakage/rework assessments, metrics analyses and even beta testing canbe
performed independently of the development team.
— Even paper documents should be delivered electronically to reduce production costs and turn aroundtime.

56

Stakeholder Environment Development Environment

5 LJ Electronic |
nagement Exchange [_M3anagement |
Artifact Releases Artifact Baselines
— { Workflow automation, metrics automation
4| hange management, document automation
E] -
=] | Requirements management
L 1 [Visual modeling]
| ET—— e | = —
Yool Subset [Editor-compiler-debugger]
| Test automation, defect tracking |
Stakeholder Activities [Detect tracking
= Configuration control board participation Environment Tools and Process
» Test scenario development Automation

* Risk management analysis

* Metrics trend analysis
= Artifact reviews, analyses, audits
* independent aipha and beta testing

Extending environments into stakeholder domains

57

	TRANSITIONING TO AN ITERATIVE PROCESS
	WORK BREAKDOWN STRUCTURES (WBS)
	CONVENTIONAL WBS ISSUES
	EVOLUTIONARY WORK BREAKDOWN STRUCTURES
	PLANNING GUIDELINES
	THE COST AND SCHEDULE ESTIMATING PROCESS
	THE ITERATION PLANNING PROCESS
	PRAGMATIC PLANNING
	LINE -OF-BUSINESS ORGANIZATIONS
	Software Engineering Process Authority (SEPA):
	Project Review Authority (PRA):
	Software Engineering Environment Authority (SEEA):
	Infrastructure:
	PROJECT ORGANIZATIONS
	Software Management Team:
	Software Architecture Team:
	Software Development Team:
	Software Assessment Team:
	EVOLUTION OF ORGANIZATIONS
	PROCESS AUTOMATION
	Automation Buliding Blocks
	THE PROJECT ENVIRONMENT
	Round-Trip Engineering
	Change Management
	Software Change Orders (SCO)
	Configuration Baseline
	Configuration Control Board (CCB)
	Infrastructures
	Organization Policy
	Organization Environment
	Stakeholder Environments

